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1 Introduction

This paper continues our investigation of high energy evolution of hadronic cross sections

and other observables. The subject has a long history, starting with Gribov’s ideas of

reggeon field theory [2] and early work exploring Pomeron interactions [3, 4]. In the

framework of QCD the perturbative evolution equation - the BFKL equation was derived

in [5]. It describes the evolution of forward and non-forward scattering amplitudes as the

energy of the collision becomes large. The BFKL equation was clearly a crucial milestone

in the study of high energy scattering. It has given an impetus to a lot of theoretical and

experimental work. However it has been realized very quickly that at very high energies

the BFKL equation violates unitarity and leads to cross sections which rise as a power of

energy. This violation is very severe, since it does not only violate the Froissart bound

for the total cross section, but also violates unitarity of the scattering amplitude at fixed

impact parameter. In order to restore unitarity one has to include t-channel exchanges

with more than just two reggeized gluons. This idea has been developed by Bartels [6].

Within this framework the generalization of the BFKL equation is the BKP equation,
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which governs (perturbative) high energy evolution of an amplitude due to an exchange of

an arbitrary but fixed number of reggeized gluons [7].

It was further realized that to achieve the s-channel unitarity one has to introduce

transitions between states with different number of reggeized gluons [8]. The ideas put

forward in [8] have been under intense investigation during the last decade or so [9–14].

At present, this approach provides elements of an effective theory in terms of t-channel

gluon states and transition vertices. These elements have been put together in [14] into

an effective theory of BFKL Pomerons interacting via triple pomeron vertex of [8]. This

model is meant to describe nucleus-nucleus collisions at high energies at LLA and large Nc.

We also note that Lipatov and collaborators [15] have derived an effective action with both

real and reggeized gluons as effective degrees of freedom. This action respects the unitarity

of full QCD, but its complexity has so far precluded any progress in understanding its

physical consequences.

It is hoped that the end result of this direction of research will be a quantum theory

of interacting Reggeons derived entirely from QCD.

A parallel line of research originated by Gribov, Levin and Ryskin [16] has been vig-

orously pursued in the last 15 years or so. It is based on the idea of gluon saturation. At

high energy the evolution of physical observables should slow down because of nonlinear

effects due to large density of gluons in the hadronic wave function. The GLR equation -

the nonlinear evolution equation for gluon density in the double logarithmic approximation

was derived in [16] and put on firmer theoretical grounds in [17]. The gluon saturation

ideas have been further developed in a series of papers by Mueller [18], who also introduced

the notion of QCD dipoles as a convenient basis for the discussion of high energy processes,

and has related it to BFKL Pomeron and the triple Pomeron vertex [19].

It was noted in [20] that the problem of saturation can be also related to nonlinearities

in the classical Yang-Mills equations. Following this observation, the formal path integral

approach to the problem of evolution has been developed in [21]. This together with

independent approaches of [22] and [23], and a later work [24] resulted in the derivation

of a functional evolution equation for the correlators of the color charge density in the

hadronic wave function, the so called JIMWLK equation (also called sometimes the Balitsky

hierarchy). The equations are more conveniently written as evolution of the correlators

of Wilson lines, introduced in [25] as effective degrees of freedom at high energy. The

JIMWLK equation takes into account the effects of nonlinearities in the wave function of

the projectile, but when applied to the scattering amplitude, it does not account for the

bulk of multiple scattering corrections. It is applicable in a situation when a dense object

(”nucleus”) scatters off a dilute perturbative object (”dipole”). The equation therefore does

not include the Pomeron loop effects [26–30]. The reverse situation - that of a perturbative

”dipole” scattering off a dense ”nucleus” was considered in [31] and the evolution equation

for this limit has been derived. We will refer to this as the KLWMIJ equation [31]. Although

it describes the same physical process as JIMWLK, the KLWMIJ evolution acts on the

wave function of a dilute object, and thus does not include the effects of nonlinearities.

It does, on the other hand, take into account all important multiple scattering effects.

The efforts to consistently include Pomeron loops into the evolution have continued since,

– 2 –



J
H
E
P
0
3
(
2
0
0
9
)
1
0
9

yielding many interesting developments [32–44]. Also a statistical analogy of the Pomeron

loop effects has been suggested in [45, 46], although its validity has not been convincingly

demonstrated.

Other recent interesting developments in this area include the calculation of the next

to leading order corrections to the JIMWLK kernel [47, 48] as well as the generalization of

the approach to calculate less inclusive observables than the scattering amplitude [49–52].

The last years also have seen progress in relating the JIMWLK approach to the reggeon

field theory. This relation has been discussed in some detail in [53]. The functional

JIMWLK equation has direct interpretation as the Schroedinger equation of the Hamilto-

nian reggeon field theory. The JIMWLK kernel in this view is simply the Hamiltonian of

the RFT (Reggeon field theory). To be precise, the theory which we dub RFT is the effec-

tive theory of QCD at high energies which governs the high energy behavior of scattering

amplitudes of hadrons. The degrees of freedom of this effective theory are the Wilson lines

(single gluon scattering amplitudes). These are not quite the reggeized gluons of [6, 7]

but are closely related to them. The mapping between the Wilson lines and reggeized

gluons of the standard formulation has been discussed in detail in [53]. Since JIMWLK

equation does not contain the Pomeron loop effects, the RFT Hamiltonian obtained in

this way is not complete. To obtain the complete RFT Hamiltonian one has to take into

account both the effects of the nonlinear corrections in the projectile wave function as well

as contributions of multiple scattering corrections to the scattering amplitude, in the same

framework. Although the complete RFT Hamiltonian has not been derived yet, some of

its general properties have been discussed in [54]. In particular, since HRFT generates the

energy evolution of hadronic scattering amplitudes, unitarity requires the spectrum of its

eigenvalues to be positive.

An important step towards the derivation of the complete HRFT was made in [1]. This

paper derived the evolution of the hadronic wave function under boost. The one step that

is still missing in [1] is the derivation of HRFT itself. To derive HRFT one has to consider

calculation of physical observables, such as the scattering amplitude in the evolved wave

function, rather than simply the evolution of the wave function itself.

The main purpose of the present paper is precisely to make this additional step and

complete the derivation of HRFT. Our final result for the RFT Hamiltonian is given in

eq. (4.28). This result is valid to leading order in the coupling constant αs at any parametric

value of the color charge density of the colliding hadrons. It also accounts for all multiple

scattering effects in the eikonal approximation. The term eikonal is used here only in the

sense that individual partons in the hadronic wave function scatter eikonally. The hadron

as a whole in this approximation does undergo both elastic and inelastic scattering [55].

This approximation is the same as used in all the recent papers on the subject quoted above.

The Hamiltonian HRFT effectively resums all perturbative diagrams in which every

factor αs is enhanced by a single logarithm of energy (leading log approximation). In all

regimes explored previously, in addition to the leading log approximation some assumption

about partonic densities was made. The density is either considered to be parametrically

small (dilute regime - KLWMIJ evolution) or parametrically large (dense regime - JIMWLK

evolution). Although we will be frequently referring to the dense regime in this paper, the
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Hamiltonian we derive is valid for arbitrary density and thus has only one resummation

parameter αs Y ≃ 1. Corrections to our result are suppressed by a power of αs at any

partonic density. Although we have not studied these corrections in full generality, one can

easily see that in both the JIMWLK and the KLWMIJ limits the expansion is in integer

powers of αs and any correction to our result contributes at most at next-to-leading order

in this expansion.

The result presented in eq. (4.28) generalizes all previously available limiting expres-

sions for HRFT [21–24, 31, 34, 38, 42] to the most general situation. It reproduces the

JIMWLK and the KLWMIJ Hamiltonians in the appropriate limits, and is applicable also

when both colliding objects are either small (”dipole-dipole scattering”) or large (”nucleus-

nucleus scattering”).

Similarly to previously known limits, the complete HRFT eq. (4.28) can be expressed

in terms of Wilson lines. Those are SU(N) unitary matrices which depend on the two

dimensional transverse coordinates. These are the basics quantum fields - the degrees of

freedom of the effective Reggeon Field Theory. We note that one can introduce two sets

of Wilson lines (associated to the propagation of projectile or target partons), which play

the role of (almost) canonically conjugate variables. Either set of the Wilson lines can be

chosen as a complete set of variables on the Hilbert space of RFT.

The scattering amplitude is not the only physical observable whose evolution is gov-

erned by HRFT. In the companion paper [56] we continue this line of investigation by

deriving expressions for more exclusive observables, which also resum effects of Pomeron

loops. In particular we discuss in [56] the single gluon inclusive spectrum and also the dou-

ble and multi gluon exclusive spectra when none of the observed gluons are separated by

large rapidity, so that the effects of energy evolution between the final state gluon rapidities

are unimportant.

This paper is structured as follows. In section 2 we recap the main results of [1] and

outline the steps for calculation of HRFT. Section 3 contains the calculations of main

ingredients necessary for the final push. In section 4 we complete the calculation of the

HRFT and derive our main result. We discuss our results in section 5. Appendices provide

some details of calculation as well as discuss some aspects of the perturbative expansion of

our result.

2 The summary and the road map

In [1] we have analyzed the evolution of the hadronic wave function at high energy. Here

we summarize the results of [1].

The standard expansion of the field operator in terms of creation and annihilation

operators of free gluons is

Aa
i (x

−, x) =

∫ ∞

0

dk+

2π

d2k

4π2

1√
2k+

{

aa
i (k

+, k) e−ik+x− −ikx + aa†
i (k+, k) eik+x− +ikx

}

(2.1)

where

[aa
i (k

+, k), a†bj (p+, p)] = (2π)3δ(k+ − p+) δ2(k − p) . (2.2)
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The operator Aa
i (x

−, x) is the vector potential operator in the light-cone gauge A+ = 0

with the zero longitudinal momentum mode subtracted.1 Throughout the text we will

be using upper Latin indices a, b . . . = 1, . . . , N2 − 1 to denote color while lower indices

i, j, . . . = 1, 2 to denote rotational components. For further reference we note that the

vector potential can also be decomposed in the creation and annihilation operators in the

frequency basis:

Aa
i (x

−, x) =

∫ ∞

0

dk−

2π

d2k

4π2

1√
2k−

{

aa
i (k

−, k) e−i k2

2k−
x− −ikx + aa†

i (k−, k) ei k2

2k−
x− +ikx

}

(2.3)

where

aa
i (k

−, k) =

√

k+

k−
aa

i (k
+, k) (2.4)

so that

[aa
i (k

−, k), a†bj (p−, p)] = (2π)3 δ(k− − p−) δ2(k − p) . (2.5)

We consider a hadronic projectile moving to the right with large energy. Suppose at

initial rapidity we know the hadronic wave function |Ψ〉. The bulk of gluons in this wave

function are at rapidities greater than some ”cut off” rapidity. The properties of this valence

component of the wave function are characterized by correlators of the color charge density

operator ja(x). The gluons with rapidity smaller than the cutoff are small in number and

therefore do not contribute to observables in the leading order in the coupling constant.

This ”soft” component of the wave function can be calculated perturbatively. It was

shown in [1] that the wave function, including its soft component has the form

|Ψ〉 = Ω[a, a†, j] |v〉 (2.6)

where a and a† are soft gluon creation and annihilation operators with rapidities below

the cutoff. The valence state |v〉 has no soft gluons and is therefore annihilated by the soft

gluon annihilation operators

a |v〉 = 0 .

The evolution operator Ω is a unitary operator of the Bogoliubov type

Ω = C B . (2.7)

Here C is a coherent operator that creates the ”classical” Weizsaker-Williams field

C = exp

{

2i

∫

d2x ba
i (x)Aa

i (x
− = 0, x)

}

. (2.8)

and B is a Bogoliubov type operator responsible for the leading quantum corrections

(see below).

The color charge operators j(x) are operators on the valence Hilbert space and form

a local SU(N) algebra:

[ja(x), jb(y)] = i g fabc jc(x) δ2(x − y) . (2.9)

1In [1] it was denoted as Ã.
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Figure 1. Diagrammatics of the classical field ba
i . The straight solid line represents the valence

charges which serve as sources of the classical field.

The Weizsaker-Williams field ba
i (x) created by the valence modes depends only on trans-

verse coordinates x and is a two dimensional pure gauge field. It can therefore be written

in terms of a unitary matrix U as

ba
i = −1

g
fabcU †bd ∂i Udc (2.10)

where fabc are the structure constants of the SU(N) and Uab is an SU(N) group element

in the adjoint representation. The Weizsaker-Williams field is related to the valence color

charge density by

∂i b
a
i (x) = ja(x) (2.11)

The classical field b has a well known diagrammatic interpretation. It sums the tree level

diagrams to the one gluon component of the state created by the coherent operator C from

the Fock vacuum (see figure 1).

The explicit form of B has not been given in [1], however the action of B on the gluon

fields was calculated. Since we will use heavily this in the following, we give here the

relevant expressions, even though they are quite lengthy.

B† Aa
i (x)B = ca

i (x) + ǫ(x−)∆ab
ij (x, y)cb

j(y
− = 0, y) , (2.12)

where

ǫ(x) =
1

2
[θ(x) − θ(−x)]

and

ca
i (x) =

∫ ∞

0

dp−

2π

∫

d2q

[

θ(−x−)e
i ∂2

2p−
x−

[t − l]ij(x, y)vaj
p−,q

(y) (2.13)

+θ(x−)e
i D2

2p−
x−

[T − L]ab
ij (x, y)vbj

p−,q
(y)

]

ap−,q + h.c. ,

with

∆ab
ij (x, y) =

{

Di
1

∂D
Dj + Di

1

D∂
Dj − 2Di

1

∂D
∂j

}ab

(x, y) . (2.14)

The covariant derivative is Dbc
i = ∂iδ

bc − fa
bcb

a
i and the projectors T, L, t, l are defined as

Lab
ij =

[

Di
1

D2
Dj

]ab

, T ab
ij = δab

ij − Lab
ij ; lij = ∂i

1

∂2
∂j ; tij = δij − lij . (2.15)
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The integral over p− in eq. (2.13) strictly speaking excludes the point p− = 0 since soft

gluon modes all have non-vanishing light cone frequency. This subtlety however does not

affect any of our calculations and we will therefore not indicate this explicitly.

The transverse basis functions vp−q are the analogs of plane waves and are normalized

according to
∫

d2q v−i
p−q

(x) v∗−j
p−q

(y) = Wij
p−

(x, y) . (2.16)

where

Wij
p−

(x, y) =

(

1

p−

)2 {

1
1

p−
+ iǫ

[

δijδ2(x − y) +
1

2
Cij(x, y)

]

+
1

1
p−

− iǫ

[

δijδ2(x − y) − 1

2
Cij(x, y)

]}

. (2.17)

with

Cab
ij (x, y) =

{

2∂i
1

D∂
Dj − 2Di

1

∂D
∂j

}ab

(x, y) . (2.18)

For all practical purposes this means that for any finite frequency p− the functions v can

be taken as plane waves (we suppress rotational and color indices in which v can be taken

as a unit matrix)

vp−,q(x) =
1

√

p−
eiqx . (2.19)

For the mode at infinite frequency the normalization is different as is given by the operator

Cab
ij (x). Although the infinite frequency mode does not contribute directly to any quantity

which is proportional to rapidity, it does play an important role in insuring the completeness

of the expansion basis in eq. (2.12). We will not be working with this mode directly, but

will simply use the fact that including this mode, the operator B is indeed unitary, with

all the ensuing consequences.

Since the color charge density is a quantum operator on the valence Hilbert space, it is

also transformed by the action of B. This transformation has been found explicitly in [1].

It turns out that for our present purposes it is not necessary to know the exact form of

this transformation apart from the fact that it adds to j terms of relative order O(αs).

We now consider the energy evolution of the hadronic wave function. Increasing energy

of a hadron is equivalent to boosting it. Under the boost transformation, the longitudinal

momenta of the soft gluons in the wave function eq. (2.6) increase. As a result, soft gluons

emerge from below the ”cutoff” and the number of gluons in the wave function which

contribute to any physical observable, such as a scattering amplitude increases (figure 2).

Thus in the leading logarithmic approximation the soft part of the wave function

determines completely the evolution of physical observables with rapidity. However to find

this evolution one has to make an additional step, and consider directly some physical

observable. The purpose of this paper is precisely to make this additional step from the

soft gluon wave function to physical observables.

The most basic and most inclusive observable is the forward scattering amplitude of

our projectile hadron on some hadronic target. This is the observable we are going to

– 7 –
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j

Y

Y

j

A

η + ∆

∆

Figure 2. The light cone wave function before and after boost. Here η stands for gluon‘s rapidity,

j for the color charge density of the valence gluons, and A for the soft gluon field.

discuss in this paper. It belongs to a broader class of observables which depend only on

the correlators of the color charge density operator ja(x) and not on other characteristics

of the projectile wave function. Evolution of observables of this type is governed by the

functional evolution equation which generalizes the JIMWLK [21, 24] and KLWMIJ [31] -

the Schroedinger equation of RFT. The kernel of the evolution equation can be viewed as

the second quantized Hamiltonian of the QCD Reggeon Field Theory (RFT) as discussed

at length in [53]. By considering an arbitrarily dense hadron as a possible target in the

scattering process, we will derive the functional evolution equation which is applicable in

the full parameter range between the BFKL scattering of two small perturbative objects

through to nucleus-nucleus scattering. The result of the present paper is therefore the RFT

Hamiltonian which contains the effects of Pomeron loops.

Another example of observables of this type are the single inclusive, double inclusive

and in general multiple gluon production amplitudes, where all gluons are close to each

other in rapidity. In the companion paper [56] we derive the explicit expressions for these

observables in terms of the target and projectile fields, to be averaged over the correspond-

ing wave functions, and discuss their evolution.

We now briefly sketch what we have to do to derive HRFT. Consider the calculation

of some hadronic observable O which depends only on the color charge density operator

ja(x) and not on any other property of the wave function

Ō = 〈v| Ô[j] |v〉 =

∫

Dj W P [j]O[j] . (2.20)

The last expression is by now the standard way of representing the wavefunction average

using functional integral. The weight functional W P provides a probability distribution

for the valence charges j in the wavefunction.

An important (but not the only) example of an observable discussed above is the

eikonal S - matrix in the external field α

Ŝ = exp

{

i

∫

x
ja(x)αa(x)

}

. (2.21)

In the approach of [21] the expression of the scattering amplitude for a hadron-hadron

– 8 –
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scattering is given by

S = 〈〈v| Ŝ |v〉〉α (2.22)

where the weight for the averaging over the fields α is determined by the wavefunction of

the target.

The same procedure applies to any observable. The matrix element Ō is the expec-

tation value of the operator O in the projectile wavefunction. In order to obtain the final

expression for the observable measured in the collision, we also have to average Ō over the

target wavefunction.

〈 Ō 〉 T =

∫

DαW T [α] Ō (2.23)

where α represents all the target fields.2

We assume, as before that only valence degrees of freedom contribute to the average

eq. (2.20) at initial rapidity. When the system is boosted to rapidity Y , two important

changes occur. First, the relevant wave function changes from |v〉 to |Ψ〉, and second the

color charge density of the soft gluons has to be added to ja in the observable O[j]. Both

changes are due to the fact that the soft gluons after boost emerge with momenta above the

cutoff rapidity, and now contribute to physical observables (see figure 2). Thus eq. (2.20)

at higher rapidity Y becomes

ŌY = 〈Ψ| O[ja(x) + ja
soft(x)] |Ψ〉 = 〈v| Ω† R̂a O[j] Ω |v〉 . (2.24)

Here the charge density shift operator

R̂a ≡ e
R

x
ja
soft(x) δ

δja(x) (2.25)

and

ja
soft(x) = g

∫

dk+

2π
a† b(k+, x) T a

bc ac(k+, x) (2.26)

is the color charge density of the soft gluons with the integral over k+ defined over the

range of momenta corresponding to the boost parameter ∆Y (figure 2).

Eq. (2.24) has a universal form, in the sense that it does not depend on the particular

operator O. Since the state |v〉 is the vacuum of the soft gluon degrees of freedom, it is

possible in principle to calculate the expectation value in eq. (2.24) over the soft gluon

part of the Hilbert space without the explicit knowledge of the operator O. This involves

calculating the following matrix element

〈0|Ω†[j, a, a†] e
R

x
ja
soft(x) δ

δja(x) Ω[j, a, a†] |0〉 . (2.27)

The quantum averages in eq. (2.27) are performed only over the soft gluon Hilbert space.

Here the functional derivatives δ/δj are treated as c-numbers since according to eq. (2.24)

they should only act on j’s in the operator O. The valence color charges ja in this expression

2In most of our discussion below we will be focused on the evolution of the projectile and will not indicate

target averages explicitly. One should remember, however, that the averaging over the target (2.23) is always

assumed in final results.
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are ”almost” c-numbers, in the sense that they are not quantum operators on the Hilbert

space of the soft gluons. One should however keep track of their ordering, since they do

not commute with each other.

The expression in eq. (2.27) of course depends on the total rapidity ∆Y available to

gluons in the soft Hilbert space. Since we are interested in deriving a differential equation

in this rapidity, we have to treat this rapidity as small. To obtain the kernel of the high

energy evolution equation we simply have to calculate eq. (2.27) to first order in this total

rapidity.

d

dY
Ō = lim

∆Y →0

〈v| Ω† R̂a Ô[j] Ω |v〉 − 〈v|O[j] |v〉
∆Y

≡ −HRFT

[

j,
δ

δj

]

〈v|O[j] |v〉 (2.28)

where HRFT is defined as

HRFT

[

j,
δ

δj

]

= − d

dY
〈0|Ω†[j, a, a†] R̂a Ω[j, a, a†]|0〉|Y =0 . (2.29)

We see that the evolution of any observable Ō is given by

d

dY
Ō = −〈v| HRFT

[

j,
δ

δj

]

O[j] |v〉 = −
∫

Dj W P [j] HRFT

[

j,
δ

δj

]

O[j] . (2.30)

Conforming with literature, in the last line we have represented averaging over the valence

state as a functional integral over the color charge density with the weight functional W P [j].

The functional derivatives can be integrated by parts to make them act on W P . Assuming

that the Hamiltonian HRFT is Hermitian (which we will find to be the case), we can rewrite

this equation as an evolution equation for the weight functional W P [j] as

d

dY
W P

Y [j] = −HRFT

[

j,
δ

δj

]

W P
Y [j] . (2.31)

Thus we conclude that in order to find the evolution of the scattering amplitude and

other observables which depend only on the color charge density, we need to calculate the

matrix element in eq. (2.27) and expand it to first order in Y . This is what we will do in

the next section.

3 The derivation

We start by deriving a more explicit expression for the wave function

|Ψ〉 = Ω[j, a, a†] |0〉 . (3.1)

We find it convenient to define the creation and annihilation operators in rapidity basis

rather than in the basis of longitudinal momentum k+ or frequency k− as described in the

introduction. Defining the rapidity variable as η = ln
p−0
p− with an arbitrary constant p−0 ,

we rescale the creation and annihilation operators as

aa
i (k

+, k) =

√

1

k+
aa

i (η, k) (3.2)

[aa
i (η, k), a†bj (ξ, p)] = (2π)3 δ(η − ξ) δ2(k − p) .
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In terms of these operators we have

Aa
i (x

−, x) =
1√
2

∫ ∞

−∞

dη

2π

d2k

4π2

{

f (b,j,η,k)(a, i, x−, x)ab
j(η, k) + f∗(b,j,η,k)(a, i, x−, x)ab†

j (η, k)
}

(3.3)

with

f (a,i,η,k)(b, j, x−, x) = δab δij e
−i k2

2p
−
0

eηx− − ikx
. (3.4)

Strictly speaking the soft modes a(η) live only at rapidities below Y , which is given by the

parameter of the boost from |v〉 to |Ψ〉. We do not denote this cutoff explicitly in most

of our formulae and extend the rapidity integration over η to infinity for all quantities for

which the integration converges. We will indicate the Y dependence for divergent quantities

and eventually this very dependence will determine the evolution in rapidity.

The coherent state operator in rapidity basis is rather simple

C = exp

{

i
√

2

∫

d2k

(2π)2
ba
i (k)

∫

dη

2π
[aa

i (η, k) + a†ai (η,−k)]

}

. (3.5)

3.1 The vacuum of β

Given that Ω is a product as in eq. (2.7), we first analyze the state

|0〉β ≡ B |0〉 . (3.6)

Clearly, the state |0〉β is annihilated by the operator βα = B aα B† . Here and in the

following we denote all the indices of operators a, a† etc by a single Greek letter α. This

includes rotational and color indices, as well as the transverse momentum and rapidity.3

Since the operator B is of the Bogoliubov type, the transformation between the operators

a, a† and β, β† is linear homogeneous and can be written quite generally as

βα = B aα B† = Θαβ aβ + Φαβ a†β , β†
α = Θ∗

αβ a†β + Φ∗
αβaβ . (3.7)

Since the transformation eq. (3.7) is canonical, the transformation matrices Θ and Φ satisfy

Θ ΦT − Φ ΘT = 0, Θ Θ† − Φ Φ† = 1 . (3.8)

The inverse transformation is given by

aα = Θ†
αβ ββ − ΦT

αβ β†
β , a†α = ΘT

αβ β†
β − Q†

αβ ββ . (3.9)

This leads to another set of relations

Θ† Θ − ΦT Φ∗ = 1 ; Θ† Φ − ΦT Θ∗ = 0 . (3.10)

The explicit form of the transformation matrices Θ and Φ can be found from the results

of [1] and we provide it later in eq. (3.37). For now however we keep the discussion general

as the explicit form of Θ and Φ is not important until late in the game.

3Below we will be frequently suppressing this index and using the more compact matrix notations instead.
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Figure 3. Diagrammatic representation of the two gluon vertex Λ.

To find the state |0〉β we write it in the form

|0〉β = F−1/2[Λ] e− 1
2

a†
α Λαβ a†

β |0〉 . (3.11)

Imposing the condition

β |0〉β = 0 (3.12)

gives

(Θ a + Φ a†) e− 1
2

a† Λa† |0〉 = (−Θ Λ + Φ) a† e− 1
2

a† Λ a† |0〉 = 0 . (3.13)

Thus we find

Λ = Θ−1 Φ . (3.14)

To find the normalization of the state we have to calculate

F [Λ] = 〈0| e− 1
2

a Λ† a e− 1
2

a† Λ a† |0〉 . (3.15)

For future use we calculate in appendix A a slightly more general expression F [Λ, Λ̄]

F [Λ, Λ̄] ≡ 〈0| e− 1
2

a Λ̄† a e− 1
2

a† Λa† |0〉 = exp

{

−1

2
Tr ln(1 − Λ̄† Λ)

}

(3.16)

with an arbitrary matrix Λ̄. In the last expression the trace is over all the indices. Noting

that F [Λ] = F [Λ,Λ] we finally find

|0〉β = e
1
4

Tr ln(1−Λ† Λ) e− 1
2

a† Λ a† |0〉 (3.17)

with Λ given by eq. (3.14). Just like the classical field b, the matrix Λ has a diagrammatic

representation. It represents the two gluon component of the wave function obtained by

action of B on the Fock vacuum, and can be represented by a two gluon vertex - figure 3.

3.2 The matrix element

According to eq. (2.29) we need to calculate the matrix element of the operator R̂a. Thus

we need to multiply the state |0〉β by the coherent operator C, eq. (2.8) and then act on

it with R̂a. The operator R̂a was introduced as the operator that shifts the valence color

charge density by the color charge of the soft gluons. On the other hand when acting on

the soft gluon operators it acts as the SU(N) rotation, rotating the soft gluon creation and

annihilation operators by the unitary phase

R̂†
a ab(x) R̂a = Rbc(x) ac(x), R̂†

a a† b(x) R̂a = Rbc(x) a†c(x) (3.18)
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with

Rab(x) =

[

P exp

{

g

∫ 1

0
dt T c δ

δjc(x, t)

}]ab

. (3.19)

As explained in [31] to properly keep track of the ordering of the non-commuting

operators ja(x) it is convenient to endow the valence color charge density j with the

additional ”ordering” coordinate t; j(x) → j(x, t). For the purpose of our present derivation

however, the only thing that matters is that Rab(x) is a unitary c - number matrix.

Rotation of a and a† is equivalent to rotation of both indices of the matrix Λ as well

as rotation of the classical field ba
i (x) by the same matrix R(x). Thus we will consider the

following general matrix element, which covers the particular case that interests us here

G[b − b̄] ≡ 〈0| e− 1
2

aα Λ̄†
αβ aβ e−i b̄α (aα + Pαβ a†

β) e−i bα (aα +Pαβ a†
β) e− 1

2
a†

α Λαβ a†
β |0〉

= 〈0| e− 1
2

a Λ̄† a e−i (b−b̄) (a + P a†) e− 1
2

a† Λ a† |0〉 . (3.20)

So far both the matrix Λ̄ and field b̄ are arbitrary. They will be specified shortly. We have

introduced the matrix Pαβ to be able to reproduce eq. (3.5) in the transverse momentum

representation. The structure of the form
∫

k b(k)[a(k)+a†(−k)] is reproduced in eq. (3.20)

by choosing the operator P to be diagonal in rapidity, color and rotational indices and to

satisfy P (k, p) a(p) = a(−k). The operator P is clearly unitary and satisfies P 2 = 1. We

will not need to know any additional properties of P in the following.

The calculation is performed in the appendix A with the result

G[b − b̄] = F [Λ, Λ̄] exp

{

−1

2
(b − b̄)(1 − ΛP )[1 − P Λ̄†ΛP ]−1(1 − P Λ̄†)P (b − b̄)

}

(3.21)

= F [Λ, Λ̄] exp

{

−1

2
(b − b̄)(1 − P Λ̄†)[1 − ΛΛ̄†]−1(1 − ΛP )P (b − b̄)

}

.

After these preliminaries we are almost ready to write down the answer for the matrix

element in eq. (2.29). The only additional element we have to take into account is the

ordering of the color charge density operators in the operators Ω† and Ω. When calculating

any physical observable, as in eq. (2.24) all the color charge density operators in the operator

O are ordered such that they are to the right of the operators j in Ω† but to the left of j’s

in Ω. Thus when we introduce the ordering coordinate t, all j’s in Ω† have to be assigned

the value t = 0, while all j’s in the operator Ω must have value t = 1. In our derivation the

fields b̄ and Λ̄ are associated with the operator Ω† and they depend on j(x, t = 0), while

the fields b and Λ depend on j(x, t = 1). Also, as explained in [36], since any physical

weight functional W P depends only on powers of the matrix R(x) acting on δ[j], all the

operators j that appear in the RFT Hamiltonian should be understood as acting on the

matrix R as left or right rotations.

ja(x, t = 1) = gJa
R(x) = −gtr

{

R(x)T a δ

δR†(x)

}

; (3.22)

ja(x, t = 0) = gJa
L(x) = −gtr

{

T aR(x)
δ

δR†(x)

}

;

Ja
L(x) = [R(x)JR(x)]a .
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Thus we define two classical fields, bR and bL:

ba
Ri = −1

g
fabcU †bd[JR] ∂i Udc[JR] ≡ −1

g
fabcU †bd

R ∂i Udc
R ;

ba
Li = −1

g
fabcU †bd[JL] ∂i Udc[JL] ≡ −1

g
fabcU †bd

L ∂i Udc
L (3.23)

and similarly two matrices Λ

ΛR ≡ Λ[JR] = Θ−1[JR] Φ[JR]; ΛL ≡ Λ[JL] = Θ−1[JL] Φ[JL] . (3.24)

In fact for the purpose of the calculation of the matrix element of R̂a in eq. (2.29) the

proper ordering of the factors of the charge density is equivalent to the substitution

Ω† → Ω†
L = B†

L C†
L; Ω → ΩR = CR BR (3.25)

where the subscript L (R) indicates that the respective operator depends on JL (JR).

We are now ready to proceed with the computation of the matrix element (2.27). We

have

〈0| Ω†
L R̂a ΩR |0〉 = 〈0| Ω̄†

L ΩR |0〉 , (3.26)

with

Ω̄L ≡ C̄L B̄L; B̄L ≡ R̂†
a BL , C̄L ≡ R̂†

a CL R̂a . (3.27)

The action of the operator Ω̄L on the soft gluon vacuum is the same as the action of ΩL

with the substitution

ba
L i → b̄a

L i ≡ R†ab bb
L i; ΛL → Λ̄L ≡ R† ΛL R . (3.28)

Using eq. (A.10) and remembering the factor
√

2 in eq. (3.5) we can finally write

〈0| Ω† R̂a Ω |0〉 = exp

{

−1

2
Tr ln(1 − Λ̄†Λ) +

1

4
Tr ln(1 − Λ̄†Λ̄) +

1

4
Tr ln(1 − Λ†Λ)

}

×

× exp
{

−(b − b̄)(1 − ΛP )[1 − P Λ̄†ΛP ]−1(1 − P Λ̄†)P (b − b̄)
}

= exp

{

−1

2
Tr ln(1 − Λ̄†Λ) +

1

4
Tr ln(1 − Λ̄†Λ̄) +

1

4
Tr ln(1 − Λ†Λ)

}

×

× exp
{

−(b − b̄)(1 − P Λ̄†)[1 − ΛΛ̄†]−1(1 − ΛP )P (b − b̄)
}

= exp

{

−1

2
Tr ln(1 − Λ̄†Λ) +

1

4
Tr ln(1 − Λ̄†Λ̄) +

1

4
Tr ln(1 − Λ†Λ)

}

×

× exp
{

−(b − b̄)N̄ †[ΘΘ̄† − ΦΦ̄†]−1NP (b − b̄)
}

(3.29)

where we have defined

NR = ΘR − ΦR P ; NL = ΘL − ΦL P

Θ̄L ≡ ΘL R; Φ̄L ≡ ΦL R; N̄L ≡ NL R = Θ̄L − Φ̄L P .
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In eq. (3.29) we have omitted the subscript L on barred quantities and R on unbarred ones.

This will be our practice also below whenever it cannot lead to confusion.

There is one point which we have glossed over, namely the ordering of the factors of the

charge density entering the classical field b relative to those entering Λ. It is obvious from

our initial expressions that all factors of Λ in eq. (3.29) have to be to the left of b, while all

factors of Λ̄ to the right of b̄; even though we did not indicate this explicitly in eq. (3.29).

As we will discuss shortly, however, this ordering is only important to subleading order in

αs [1], and so we will not discuss it any further in the present paper.

Eq. (3.29) is far from being the end of the road. We now have to find ΛR, etc explicitly

in terms of the matrix UR (or equivalently in terms of the current JR), and also expand

the matrix element eq. (3.29) to first order in the length of the rapidity interval Y . We

will now address the first question.

3.3 The matrix Λ

To calculate the matrix Λ consider expansion of the field Aa
i (x

−, x) in terms of two different

sets of creation and annihilation operators a†, a and β†, β.

Referring to eqs. (2.12), (2.13) we can write expansion of A in terms of the operators

βa
i (η, k) = B aa

i (η, k)B† . (3.30)

This has the form

Aa
i (x

−, x) =
1√
2

∫ ∞

−∞

dη

2π

d2k

4π2

{

g(b,j,η,k)(a, i, x−, x)βb
j (η, k) + g∗(b,j,η,k)(a, i, x−, x)βb†

j (η, k)
}

(3.31)

with

gR ≡ g(b,j,η,k)(a, i, x−, x) = 〈x| θ(−x−) e i ∂2

2k−
x−

(1 − 2l)ij δab + (3.32)

+θ(x−) [e i
D2

R
2k−

x−

(1 − 2LR)]ab
ij + ǫ(x−) [∆R(1 − l − LR)]ab

ij |k〉

where as usual |k〉 is the eigenstate of transverse momentum and |x〉 is the eigenstate of

transverse coordinate. The subscript R in the above expressions indicates that the relevant

quantity depends on JR. Here Lab
ijR ≡ Dae

i (bR)
[

1
D2(bR)

]ed
Ddb

j (bR).

The two sets of functions (f, f∗) of eq. (3.4) and (g, g∗) of eq. (3.32) constitute complete

bases on the functional space. It is convenient to define a scalar product on this space as

〈g|f〉[(c,n,ξ,p);(b,j,η,k)] ≡ i
∑

a,i

∫

dx−d2x ∂+ g∗ (c,n,ξ,p)(a, i, x−, x) f (b,j,η,k)(a, i, x−, x) ;

〈g∗|f〉[(c,n,ξ,p);(b,j,η,k)] ≡ −i
∑

a,i

∫

dx−d2x ∂+ g(c,n,ξ,p)(a, i, x−, x) f (b,j,η,k)(a, i, x−, x) . (3.33)

With this scalar product the bases defined in eqs. (3.4), (3.32) are orthonormal:

〈f (b,j,η,k)|f (c,l,ξ,p)〉 = δbcδjlδ(η− ξ)δ2(k−p); 〈g(b,j,η,k)|g(c,l,ξ,p)〉 = δbcδjlδ(η− ξ)δ2(k−p) .

(3.34)
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The resolution of identity in this space (completeness relation) is given by

i
∑

a,i

∫

dη

2π

d2k

4π2

[

f (a,i,η,k)(b, j, x−, x) ∂+f∗(a,i,η,k)(c, l, y−, y) − (3.35)

−f∗(a,i,η,k)(b, j, x−, x)∂+ f (a,i,η,k)(c, l, y−, y)
]

= δbc δjl δ(x
− − y−) δ2(x − y)

and similarly for the basis (g, g∗).

We can now calculate the matrices Θ and Φ defined in eq. (3.7).

Θ = 〈g|f〉 ; Φ = 〈g|f∗〉 . (3.36)

Performing the integration we find explicitly (see appendix B)

Θ(p, η; k, ξ) = i〈p|2(l − LR) + (1 − l − LR)∆†
R|k〉 +

+
i

1 − eξ−η − iǫ
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2LR)

1

1 − ∂2

D2
R

eξ−η + iǫ
|k〉

Φ(p, η;−k, ξ) = i〈p|2(l − LR) + (1 − l − LR)∆†
R|k〉 +

+
i

1 + eξ−η − iǫ
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2LR)

1

1 + ∂2

D2
R

eξ−η + iǫ
|k〉

N(p, η; k, ξ) = Θ(p, η; k, ξ) − Φ(p, η;−k, ξ)

=
2i

e−(ξ−η) − eξ−η − iǫ
〈p|(1 − 2l)|k〉

−〈p|(1 − 2LR)
2i

D2
R

∂2 e−(ξ−η) − ∂2

D2
R

eξ−η + iǫ
|k〉 .

In the last terms in all three expression the ordering of the factors is such that all ∂2 are to

the right of all D2
R. We have also not indicated explicitly the color and rotational indices

on Θ and Φ. Since the basis function g in (3.32) depends on JR, all the function Θ, Φ and

N computed above are “Right” quantities and should be understood as ΘR, ΦR and NR.

Substituting JL for JR generates the analogous “Left” quantities.

Mindful of the derivations in the previous subsection we find it convenient to define

yet another set of creation and annihilation operator β̄ and β̄† by

β̄α ≡ B̄ aα B̄† = Θ̄αβ aβ + Φ̄αβ a†β , β̄†
α = Θ̄∗

αβ aβ + Φ̄∗
αβ a†β . (3.37)

Using eq. (3.7) we find that the set β, β† is related to β̄, β̄† by

βα = (ΘΘ̄† − ΦΦ̄†)αβ β̄β + (ΦΘ̄T − ΘΦ̄T )αβ β̄†
β (3.38)

β†
α = (Φ∗Θ̄† − Θ∗Φ̄†)αβ β̄β + (Θ∗Θ̄T − Φ∗Φ̄T )αβ β̄†

β .

We thus see that the basic matrix that enters the last line of eq. (3.29) K = ΘΘ̄†−ΦΦ̄† is the

transformation matrix between the operators βα and β̄α. We can obtain it by calculating

the overlap matrix between the appropriate basis functions

Kαβ = (ΘΘ̄† − ΦΦ̄†)αβ = 〈gα|ḡβ〉
Eαβ = (ΦΘ̄T − ΘΦ̄T )αβ = 〈gα|ḡ∗β〉 . (3.39)
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Although we do not have the explicit form of ḡ, we can still use eq. (3.39) to calculate

the matrices K and E using the following argument. We do have the explicit form of the

basis functions gL, which are the same as gR except for the substitution JR → JL. We can

thus calculate explicitly the overlap matrices between gR and gL (the analogs of K and

E). We then notice that the operator β̄ is related to the operator βL by β̄ = R†βL, and

thus Θ̄L = ΘLR; Φ̄L = ΦLR. Then referring to eqs. (3.39) we see that to calculate K

and E from the overlap matrices of gR and gL we must rotate all terms involving bL by

the operator R† on the left. Performing this calculation explicitly we find

K(p, η; k, ξ) = i〈p|2(1 − l − LR)R†(l − LL) + (1 − l − LR)(∆̄ − ∆†
R)R†(1 − l − LL)|k〉

+
i

1 − eξ−η + iǫ
〈p|(1 − 2l)R†(1 − 2l)|k〉

−i〈p|(1 − 2LR)
1

1 − D2
R

D̄2 eξ−η − iǫ
R†(1 − 2LL)|k〉

E(p, η;−k, ξ) = i〈p|2(1 − l − LR)R†(l − LL) + (1 − l − LR)(∆̄ − ∆†
R)R†(1 − l − LL)|k〉

+
i

1 + eξ−η
〈p|(1 − 2l)R†(1 − 2l)|k〉

−i〈p|(1 − 2LR)
1

1 +
D2

R

D̄2 eξ−η
R†(1 − 2LL)|k〉 (3.40)

with

D̄ ≡ R† DL R; ∆̄ = R† ∆L R . (3.41)

In eq. (3.40) all DR are ordered to the left of all DL.

Note that similarly to Θ and Φ, the matrices K and E satisfy

KET−EKT = 0, KK†−EE† = 1; K†K−ET E∗ = 1; K†E−ET K∗ = 0 . (3.42)

For future convenience we also define the analog of the matrix Λ:

Ξ = K−1 E . (3.43)

Using the identities eq. (3.8), (3.10), (3.42) it is straightforward to show that

1

1 − ΞΞ†
= K† K ;

1

1 − Ξ†Ξ
= KT K∗ . (3.44)

4 HRFT

Now that we have all the ingredients, we are ready to put them all together and to derive the

RFT Hamiltonian. Before continuing with this calculation we want to clarify the counting

of powers of αs.

4.1 Counting powers of αs

First, using eq. (3.44) we have

−1

2
Tr ln(1−Λ̄†Λ)+

1

4
Tr ln(1−Λ̄†Λ̄)+

1

4
Tr ln(1−Λ†Λ) =

1

4
Tr ln(1−Ξ†Ξ) = −1

4
Tr ln(KK†) .

(4.1)
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Now, recalling the definition (2.29) and referring to eq. (3.29) and eq. (4.1) we can write

HRFT =
d

dY

[

(b − b̄) N̄ † K−1 N P (b − b̄) +
1

4
Tr ln K K†

]

|Y =0 . (4.2)

The two terms in this expression are not the same order in αs. We remind the reader that

this expression was derived starting with the evolution of the wave function of [1]. This

evolution kept the leading in αs term for arbitrary parametric value of j and also terms

which can be O(1) at large j. The former terms in the evolution of the wave function give

rise to the first term in HRFT eq. (4.2), while the latter leads to the last term in eq. (4.2).

This can be seen directly from eq. (4.2). As long as j ≪ 1/g, the classical fields b and b̄,

as well as the operators Λ and Λ̄ can be expanded in powers of gj. To count powers of αs

we have to decide how to treat R. We know that when we calculate the forward scattering

amplitude, after averaging over the projectile wave function, R turns into S - the S-matrix

of scattering of a single projectile gluon on the target [31, 44]. Therefore if the target is

dense we should count R as being of order one but not parametrically close to the unit

matrix. In this case we see that

(b − b̄)2 ∼ O(j2); KK† = 1 + O(g2j2) . (4.3)

Thus indeed the first term in eq. (4.2) is leading, while the second is suppressed by αs.

When j ∼ O(1/g) the matrix Λ can not be expanded. Still Λ ∼ O(1) while b − b̄ ∼
O(1/αs), and the first term is leading.

If the target is not dense, the matrix R is close to unity R = 1 − δR. Then b̄ is

perturbatively close to b; that is (b − b̄) ∼ δRb, and also K ∼ 1 + O(δR). The first term

in (4.2) is (δRb)2, and dominates over the second term, which is (δR)2.

Thus we conclude that in all parametric regimes of the projectile and target fields, the

second term in eq. (4.2) is suppressed by αs relative to the first term. In most of this paper

we will therefore neglect the last term and will only consider the leading order piece

HRFT =
d

dY

[

(b − b̄) N̄ † K−1 N P (b − b̄)

]

|Y =0 . (4.4)

At this point we are ready to comment to the question of ordering of the factors of b and

Λ briefly mentioned in the subsection 3.2. Once we restrict ourselves to eq. (4.4), this

ordering becomes irrelevant. As we have noted above, in principle all factors of Λ have

to be ordered to the left of b, etc. However, changing the order of Λ and b brings a term

proportional to the commutator

[Λ, b] =
δΛ

δ(gb)
[gb, b] ∼ δΛ

δ(gb)
O(g2b) . (4.5)

The additional terms this procedure generates are of the same order as the last term in

eq. (4.2) which we have neglected. Thus the ordering question is irrelevant as long as we

are interested in the leading order term.

The last term in eq. (4.2) originates directly from the Bogoliubov part of the trans-

formation Ω. However, even though this term itself in eq. (4.2) is suppressed by αs, it is
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important to realize that the Bogoliubov operator contributes in an essential way to HRFT

and to other observables at high energy. For example the factors of N , K−1 and N̄ in

eq. (4.4) are direct manifestations of the Bogoliubov part of the transformation Ω. The

presence of the Bogoliubov operator B also leads to interesting effects in other observables.

For example, as shown in the companion paper [56], it is responsible for the appearance of

short range rapidity correlations in multi-gluon spectrum. For these particular correlations

B gives the leading effect, as these correlations would be absent if the transformation Ω

had only the classical piece of the type of C. We discuss this in more depth in [56].

4.2 JIMWLK for the umpteenth time

At this point to keep our finger on the pulse it is a good idea to perform a consistency check

of our calculation so far by reproducing the JIMWLK equation. The JIMWLK equation

is obtained by expanding eq. (4.4) to second order in δ/δj. Consider the expression

(b − b̄) N̄ † K−1 N P (b − b̄) . (4.6)

Since b − b̄ is already first order in the derivative, in this approximation we have to take

Λ̄ = Λ and N̄ = N . This simplifies things dramatically, since in this case K = 1. Thus in

this limit we only need to calculate

(b − b̄)

∫

η,ξ,ζ
N †(η, ξ)N(ξ, ζ)P (b − b̄) (4.7)

where for simplicity we do not indicate the transverse coordinate dependences. Note that

here and in the following the measure of the rapidity integration is defined as dη/2π, so

that
∫

η ≡
∫ dη

2π .

Since N(η, ξ) = N(η − ξ) (see (3.37)) is the function of rapidity difference only, one of

the rapidity integrals in eq. (4.7) gives the factor of Y , and the RFT Hamiltonian becomes

HRFT =
1

2π
(b − b̄)N †

⊥ N⊥ P (b − b̄) (4.8)

with

N⊥ ≡
∫

η
N(η) . (4.9)

We remind the reader that b is independent of rapidity. The integral over the rapid-

ity in both terms of N in eq. (3.37) is the same (after the appropriate shift of the

integration variable)

∫

dη
2

eη − e−η − iǫ
= P

[
∫

dη
2

eη − e−η

]

+ 2iπ

∫

dηδ(eη − e−η) = i π . (4.10)

Thus we obtain

N⊥ = [1 − l − L] . (4.11)

With this result, expanding b − b̄ to first order in δ/δj in eq. (4.8) it is straightforward to

see that eq. (4.8) reproduces the JIMWLK Hamiltonian in the form obtained in [1]. Having

established this, we now turn to the calculation of the Holy Grail - the complete HRFT.
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4.3 The holy grail: the RFT hamiltonian

We have to evaluate

[b − b̄] N̄ † K−1 NP [b − b̄] = (4.12)

=

∫

x,y,z,u

[

b(x) − b̄(x)
]

∫

η,ξ,λζ
N̄ †(η, x; ξ, y)K−1(ξ, y;λ, z)N(λ, z; ζ, u)

[

b(u) − b̄(u)
]

.

Note that all the operators in question (N̄ , N and K) depend only on rapidity differences.

Thus the integration over rapidities yields

1

2π

∫

x,y,z,u
[b(x) − b̄(x)] N̄ †

⊥(x, y)K−1
⊥ (y, z)N⊥(z, u) [b(u) − b̄(u)]Y . (4.13)

Here Y is the total rapidity interval and we have defined

K⊥(z, u) ≡
∫

dη

2π
K(η, z; ξ, u) . (4.14)

Note that since the operator K depends only on rapidity difference, the integral of the

inverse is the same as the inverse of the integral

∫

η
K−1(η − ξ) =

[
∫

η
K(η − ξ)

]−1

. (4.15)

If all rapidity integrals were finite, the expression in eq. (4.13) would be proportional to

the total length of rapidity interval opened by the boost, or ”created” by the action of the

operator Ω. Eq. (2.29) then would imply

HRFT =
1

2π

∫

x,y,z,u
[b(x) − b̄(x)] N̄ †

⊥(x, y)K−1
⊥ (y, z)N⊥(z, u) [b(u) − b̄(u)] . (4.16)

Using eqs. (4.10), (4.11) we have

N⊥(x, y) = 1 − l − LR; N̄⊥(x, y) = (1 − l − LL) R . (4.17)

The integration of K−1 however gives a puzzling result. If expression eq. (3.40) is taken

literally, we find that at large Y
∫

η
K(η, ξ) ∝ Y ;

∫

η
K−1(η, ξ) ∝ 1

Y
(4.18)

It then seems that eq. (4.13) does not have the overall factor Y and thus does not yield

a logarithmic evolution. The resolution of this puzzle is the following. Since HRFT is

obtained by differentiation with respect to Y , at this stage of the calculation we really

should consider Y to be small rather than large. In writing eq. (4.13) we have assumed

that it does not contain higher powers of Y . On the other hand our expressions when

expanded in powers of αs at small j contain higher order perturbative contributions. The

standard perturbative expansion at any fixed order (beyond the leading one) contains

higher powers of Y . The simplest source of higher powers of rapidity is the ”iteration”
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of the leading order kernel. Such terms have been identified and removed in the NLO

computation of the JIMWLK kernel [47]. Obviously in our case also these higher powers

of logarithms have to be subtracted in order to extract the evolution kernel. This of course

is the same as treating Y as infinitesimal while extracting HRFT from the fixed order

perturbative calculation. Clearly in the present case we should do the same - we should

learn how to subtract the higher powers of Y in eq. (4.13). That such higher powers exist

is quite obvious. If we think of Y as of finite range of integration of the rapidity integrals,

eq. (4.18) reads schematically as

∫

η
K(η, ξ) = κ1 + κ2 Y ;

∫

η
K−1(η, ξ) = κ−1

1

∞
∑

n=0

(−1)n(κ−1
1 κ2 Y )n (4.19)

with κ1 and κ2 some operators in the transverse space. This structure is demonstrated

explicitly in the appendix C, where we perform the perturbative expansion of eq. (4.13).

We show there that the next to leading term contains a term proportional to Y 2, as in [47].

In view of this it is clear that our task is to extract the n = 0 term in the sum in

eq. (4.19). This is actually not difficult. Examining the expression eq. (3.40) it becomes

clear that the κ2 Y term in eq. (4.19) comes from the integral over rapidity of the rapidity

independent terms in K. Let us rewrite K as follows

K(η − ξ) = K̃(η − ξ) + KA(η − ξ) + KC (4.20)

where K̃ is a symmetric (K̃(η − ξ) = K̃(ξ − η)), bounded operator whose matrix elements

vanish as |η− ξ| → ∞; while KA is antisymmetric (KA(η− ξ) = −KA(ξ−η)) and KC does

not depend on rapidity. We can then write
∫

η
K(η − ξ) =

∫

η
K̃(η − ξ) + KC Y . (4.21)

Thus expansion of
∫

η K−1 in powers of Y is the same as expansion in powers of KC . Since

we are interested only in the leading term in this expansion, we need to drop KA + KC

from the expression for K in eq. (3.40) and retain K̃. Eq. (4.4) now reads

HRFT =
1

2π

∫

x,y,z,u
[b(x) − b̄(x)] N̄ †

⊥(x, y) K̃−1
⊥ (y, z)N⊥(z, u) [b(u) − b̄(u)] . (4.22)

A quick calculation gives

K̃(η, ξ) =
i

2
(1 − 2l)R† (1 − 2l)

[

1

1 − eξ−η + iǫ
+

1

1 − e−(ξ−η) + iǫ
− 1

]

(4.23)

− i

2
(1 − 2LR)





1

1 − D2
R

D̄2 eξ−η − iǫ
+

1

1 − D2
R

D̄2 e−(ξ−η) − iǫ
− 1



 R†(1 − 2LL)

To calculate the integral over rapidity, consider an integral

∫

dx

[

1

1 − aex − iǫ
+

1

1 − ae−x − iǫ
− 1

]

=

∫

dx
1 − a2

(1 − aex − iǫ)(1 − ae−x − iǫ)
. (4.24)
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To integrate we can close the contour in the complex plane. The integrand decays ex-

ponentially at infinity everywhere except close to the imaginary axis. Nevertheless the

contour can be closed. To see this note that the integrand has an infinite number of poles

at x−
n = − ln a + 2πin − iǫ and x+

n = ln a + 2πin + iǫ. The residue of the pole x−
n is the

negative of the residue of the pole x+
n . Thus the contribution of a pair of poles vanishes,

and the result of the integral does not depend on how many pairs of poles the contour

encloses. Closing the contour above the real axis we see that the only uncanceled pole is

x+
0 , it’s residue is unity, and the result of the integration is

∫

dx

[

1

1 − aex − iǫ
+

1

1 − ae−x − iǫ
− 1

]

= 2πi . (4.25)

Analogously
∫

dx

[

1

1 − aex + iǫ
+

1

1 − ae−x + iǫ
− 1

]

= −2πi . (4.26)

Putting it all together we find

K̃⊥ =
1

2

[

(1 − 2l)R† (1 − 2l) + (1 − 2LR)R† (1 − 2LL)
]

. (4.27)

Thus the complete RFT Hamiltonian is given by

HRFT =
1

π
[bRR† − bL ] (1 − l − LL) (4.28)

×
[

(1 − 2l)R† (1 − 2l) + (1 − 2LR)R† (1 − 2LL)
]−1

(1 − l − LR) [bR − R† bL] .

This is the main result of the present paper. Note, that HRFT can be written entirely

in terms of three unitary matrices R(x), UR(x) and UL(x). Restoring all the indices and

transverse coordinate dependences we have

HRFT =
1

8π3

∫

x,y,z,z̄
[bb

Ri(x)R†ba(x) − ba
Li(x)]

[

δij
1

(x − z)2
− 2

(x − z)i (x − z)j
(x − z)4

]

×
[

δac + [U †
L(x)UL(z)]ac

]

K̃−1 cd
⊥jk (z, z̄)

[

δkl
1

(y − z̄)2
− 2

(y − z̄)k (y − z̄)l
(y − z̄)4

]

×
[

δde + [U †
R(z̄)UR(y)]de

]

[be
Rl(y) − R†ef (y) bf

Lk(y)] (4.29)

with

K̃ ab
⊥ij(x, y) =

1

2π2

∫

z

[

δik
1

(x − z)2
− 2

(x − z)i (x − z)k
(x − z)4

]

× (4.30)

×
[

δkj
1

(z − y)2
− 2

(z − y)k (z − y)j
(z − y)4

]

×
{

R†ab(z) +
[

U †
R(x)UR(z)R†(z)U †

L(z)UL(y)
]ab

}

and

ba
L(R)i = −1

g
fabcU †bd

L(R) ∂i Udc
L(R) . (4.31)
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We note that in appropriate limits eq. (4.28) reduces to the known results. We have

already discussed the JIMWLK limit, and it also directly follows from the above formula.

The leading order expansion of R in powers of δ/δj requires that we set R = 1 everywhere

except in bLR, which has to be expanded to first order. In this limit eq. (4.28) reduces to

HJIMWLK. In the limit of the low charged density on the other hand, we have to expand

in j. To lowest order in j we have LR = LL = l. The denominator in eq. (4.28) cancels the

two adjacent factors (1−2l) in the numerator leaving the factor 1/2. Additionally we have

to expand b to first order in j, that is bi = ∂i

∂2 j. We thus obtain the KLWMIJ limit [31]

HRFT → HKLWMIJ =
1

2π

[

j
∂i

∂2
− j R† ∂i

∂2
R

] [

∂i

∂2
j − R† ∂i

∂2
R j

]

. (4.32)

Note that if we do not expand b to first order on j but still set LR = LL = l in the

rest of the expression, we obtain the form dubbed in [31] ”KLWMIJ+”

HKLWMIJ+ =
1

2π
[bR − R†bL]2 . (4.33)

Although this looks simple and rather appealing, it is not a leading term in HRFT in any

well defined limit. This expression was also derived in [38, 42]. It has been suggested

in [38] that it might in fact be the complete expression for HRFT, including the Pomeron

loop effects. Our present derivation makes it clear that this is not the case, as in general

the terms kept in HKLWMIJ+ are as important as the terms omitted. In particular none

of the effects coming from the Bogoliubov part of the operator Ω is taken into account in

eq. (4.33) and thus the JIMWLK limit is not reproduced.4

5 Discussion

First, let us summarize the main results of this paper. We have calculated the Hamiltonian

of the Reggeon field theory in the eikonal approximation.

HRFT =
1

π
[bR − bL R]R† (1 − l − LL) (5.1)

×
[

(1 − 2l)R† (1 − 2l) + (1 − 2LR)R† (1 − 2LL)
]−1

(1 − l − LR) [bR − R† bL] .

This Hamiltonian governs the evolution of hadronic observables with energy. It reproduces

the JIMWLK and KLWMIJ limits discussed in the literature earlier, as well as the ”inter-

mediate” form - KLWMIJ+. The evolution generated by this Hamiltonian is valid for all

interesting values of the color charge density g < j < 1
g . This covers the hadronic targets

from a dilute perturbative object (a ”dipole”) to a dense non-perturbative object with

4ref. [38] asserts that eq. (4.33) does reproduce the JIMWLK limit. The argument of [38] however is not

direct but is rather based on an application of the Dense-Dilute Duality transformation [35] UR → R. To

be able to apply this transformation to HRFT however one has to know the transformation properties of

UL. A certain transformation of UL was postulated in [38]. Unfortunately this did not take into account

the fact that UL is not independent of UR and R, but rather is unambiguously determined once UR and R

are known. The transformation postulated in [38] turns out to be inconsistent with this dependence, and

thus the argument about reproducing the JIMWLK limit given in [38] fails.
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large gluon density (a ”nucleus”). Importantly it also describes the evolution of a nuclear

projectile at all momentum scales. This is important since at high transverse momentum

- larger than the saturation momentum Qs, a nucleus is also transparent, and thus the

color charge density at these momenta is small. Thus if one is indeed interested to follow

evolution at large momentum scales, the JIMWLK equation is not adequate even if the

projectile is a nucleus. Another regime where JIMWLK is not adequate for a nuclear target

is in description of nuclear periphery where the color charge density is also small. Again,

in this regime HRFT supercedes HJIMWLK, although here the situation is complicated by

non-perturbative soft effects related to confinement physics.

We note that the Hamiltonian eq. (5.1) is invariant under the Gribov‘s signature

symmetry, which in [53] was identified as the symmetry under the transformation R →
R†, JL → JR.

An attempt to derive the complete Reggeon Field Theory Hamiltonian was made

in [38]. As we mentioned earlier, the result presented in [38] is the KLWMIJ+ Hamilto-

nian, while the corrections due to the Bogoliubov part of the operator Ω were missing.

Since the derivation of [38] is in the Lagrangian formalism, it also leaves unanswered the

question about the canonical structure of the operators entering the RFT Hamiltonian.

Our derivation clarifies this question along the lines discussed in [54]. The Hilbert space of

the Reggeon field theory is the space of the functionals of the unitary matrix R: Ψ[R(x)].

The unitary matrix R is therefore the only independent quantum degree of freedom in this

theory. The operators JL(x) and JR(x) act on this space as the generators of local left

and right SU(N) transformation group. Consequently the operators UL and UR do not

commute with R, but have rather complicated commutation relations determined by the

dependence of UR on JR and of UL on JL. On the other hand UR commutes with UL, since

JR and JL commute with each other.

There is a question, which we have not touched upon so far, but which is important for

understanding the consistency of the whole approach. The issue is when can we consistently

treat the length of the rapidity interval Y as large, and when can we treat it as small. In

our derivation we do both. First, when deriving the evolution of the hadronic wave function

in [1], we have approximated the interaction between the soft modes and the valence modes

of the gluon field by the eikonal vertex.5 This is valid as long as the main contribution

to physical quantities comes from the soft gluons with rapidities much smaller than the

rapidities of the valence ones. The borderline region, where the rapidities of the ”soft”

and ”valence” gluons are comparable, is of order δY ∼ 1. Thus consistency of the eikonal

approximation requires Y ≫ 1. As long as the eikonal approximation is valid, we can

ignore finiteness of Y and treat the phase space available to soft gluons as infinite, which

is what was done in [1].

On the other hand when calculating HRFT itself we have differentiated the matrix

element with respect to Y at Y = 0. Thus at this point we have treated Y as small.

Even though it may seem odd, in principle the two approximations are not necessarily

5 This is technically not the same as the eikonal approximation for scattering on the target, although

the consistency of the whole approach likely requires both.
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incompatible. The question is how fast is the evolution of a given physical quantity. For

example, in the BFKL calculation to get significant change in the cross section due to the

contribution of soft gluons, one needs to increase the rapidity of a process by Y ∼ 1
αs

. This

means, that when taking the derivative to derive the BFKL Hamiltonian the smallness of

the step in Y means simply ∆Y ≪ 1
αs

. At small coupling constant this is still compatible

with the condition for validity of the eikonal approximation ∆Y ≫ 1. We can thus use

the eikonal approximation (”large” Y approximation) to calculate the evolution even on a

”small” rapidity interval. One can have one’s cake and eat it!

The same exact argument holds for the KLWMIJ and JIMWLK Hamiltonians. For-

mally the evolution eigenvalues in both cases are of order αs. To see this remember that

rescaling j, the KLWMIJ Hamiltonian can be written as

HKLWMIJ = αs H̄KLWMIJ

[

1

g
j,R

]

. (5.2)

We use this Hamiltonian when j ∼ g and R ∼ 1, thus parametrically the eigenvalues are

ωKLWMIJ ∼ O(αs). Likewise for JIMWLK

HJIMWLK = αs H̄JIMWLK

[

U,
δ

δ(gj)

]

(5.3)

where U ∼ 1 and gj ∼ 1 so that ωJIMWLK ∼ O(αs).
6 Thus for the evolution of the forward

scattering amplitude in either KLWMIJ or JIMWLK limits, we have

S(Y ) ∼ eαs κ Y S(0) (5.4)

where κ is of order one. Thus again we see that the S-matrix changes significantly only if

the rapidity is large Y ∼ 1
αs

. So in the KLWMIJ and JIMWLK limits one can have large

rapidity interval to accommodate the eikonal approximation, but still small enough steps

in rapidity to be able to calculate the derivative.

This argument cannot be straightforwardly extended for HRFT of eq. (5.1). Assuming

b− b̄ ∼ O(1/g) and R ∼ 1 we expect HRFT ∼ O(1/αs), and thus ωRFT ∼ 1
αs

. This suggests

that the evolution with HRFT is very fast and observables change significantly over the

rapidity range Y ∼ O(αs). If this were indeed the case, the whole approach beyond the

KLWMIJ/JIMWLK limits would be in question. However, the situation is not really so

bad. Although we do not know the spectrum of HRFT it is very likely that just like in the

JIMWLK/KLWMIJ case the spectrum is continuous with lowest eigenvalue being zero.

In fact the existence of eigenstates with zero eigenvalue is straightforward to establish.

Just like for JIMWLK/KLWMIJ the state (in the RFT Hilbert space) with zero charge

density j|Yang〉 = 0 and the state with wave function independent of j: R|Yin〉 = |Yin〉
are both eigenstates of HRFT with zero eigenvalues [54]. Physically those are the totally

white (vacuum) and the totally black (black disk) states. If indeed the spectrum of HRFT is

continuous then the spectrum also has eigenvalues of O(αs). Evolution of observables which

have significant overlap with eigenstates that correspond to these eigenvalues then has the

6In fact we know that due to the dense-dilute symmetry [35] the two sets of eigenvalues are equal.
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same speed as for the JIMWLK/KLWMIJ evolution. More formally we can represent any

observable and its evolution as

〈O〉 =

∫

[dj]W P [j] O[j] = 〈W P |O〉 (5.5)

with O[j] is itself a target average of the original observable operator

O[j] =

∫

[dS]O[j, S]W T [S] . (5.6)

and bra and ket referring to states in the Hilbert space of RFT. Then

d

dY
〈O〉 = −

∫

[dj]W P [j]HRFT O[j] = −
∑

n

ωn〈W P |n〉〈n|O〉;

〈O〉Y =
∑

n

e−ωnY 〈W P |n〉〈n|O〉 . (5.7)

Thus if at the initial rapidity both |W P 〉 and |O〉 have overlap with eigenstates n such

that ωn ∼ O(αs), the evolution of such observables with HRFT is slow. In the companion

paper [56] we discuss an argument purporting to establish that inclusive multi-gluon am-

plitudes evolve with the JIMWLK Hamiltonian. If true, this would then suggest that the

multi-gluon amplitudes are indeed observables of this sort.

An interesting question is whether the forward scattering amplitude in the nucleus-

nucleus collision is also such an observable. As we have discussed above, the forward

amplitude is not evolved with JIMWLK Hamiltonian, but with complete HRFT. Also if we

consider scattering on a fixed configuration of the target field α, the evolution is certainly

fast. The counting which gives HRFT as O(1/αs) clearly holds for a generic configuration

of α ∼ 1/g. A small change of the projectile charge density δj ∼ O(1) leads to a large

change of the phase since α is very large. Another way of putting it, is that the observable

exp{ijα} is orthogonal to |Yin〉 and probably also almost orthogonal to other Yin -like

states, while W P [j] being the weight function of a nucleus, has a very small overlap with

|Yang〉 and Yang -like states. Thus the overlap of W P with exp{ijα} is dominated by the

states n with large eigenvalues ωn.

The interesting quantity is however not the scattering amplitude on a fixed configura-

tion of the field α, but rather the target-averaged observable like in eq. (5.6). Averaging

over the target fields has the effect of averaging the phase exp{ijα} to an extremely small

value. Thus it could well be that the contribution of the states with large ωn is erased by

the averaging procedure. If this is the case we are back to the situation where the states

with small ωn dominate both the value of the observable and its evolution. In this case the

eikonally derived HRFT is applicable also for the forward scattering amplitude. We have not

studied this question any further and at the moment cannot make a definitive statement.

Finally we want to mention several possible lines for further research. There are two

questions that can be addressed immediately. First is extending our calculation [56] of

multi-gluon spectrum to the situation when the rapidities of the observed gluons are far

from each other in rapidity. This should follow very closely the derivation of [51] and should

not pose any major complications.
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Secondly, we have not studied here the effects of the Tr ln term in HRFT, since it is

a subleading in the coupling constant effect. At j < 1/g this term collects some of the

subleading corrections, but may not be complete (we have not analyzed this question).

However, as follows from [1], at j ∼ 1/g this term contains all the NLO corrections to

HJIMWLK. Thus for large projectile fields it is very interesting to calculate this term

explicitly, as it is the generalization of purely gluonic terms in the calculation of [47] for

the case when the projectile is dense (and the target, in principle is arbitrary).

A more formal question is that about the selfduality of HRFT. It was shown in [35]

that the RFT Hamiltonian must be selfdual under the Dense Dilute Duality transformation

UR ↔ R. We have not addressed this question in the present paper. The selfduality is not

an entirely trivial issue, since to verify it we need to understand the duality transformation

properties of UL. We are hopeful that this can be done and plan to address this question

in the future.

Finally, of course it is imperative to understand what physical consequences has the

inclusion of Pomeron loops in the evolution. We hope that it will be possible to analyze

the dynamics generated by HRFT at least numerically. It appears to be a much more

complicated problem than, for example JIMWLK evolution successfully studied in the

Langevin formulation in [57], as the kernel now has an infinite number of derivatives and

does not allow Langevin formulation. Still we are hopeful that some quantitative analysis

will be possible. It is generally true, that it is one matter to find the Holy Grail, and quite

another to learn to drink from it.
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A The calculation of matrix elements

In this appendix we give the details of the calculations in section 3. We have to calculate

the matrix element

F [Λ, Λ̄] = 〈0|e− 1
2

a Λ̄† a e−
1
2

a† Λa† |0〉 . (A.1)

Differentiating this with respect to Λ we obtain

∂F

∂Λαβ
= 〈0|e− 1

2
a Λ̄ a

[

−1

2
a†α a†β

]

e−
1
2
a† Λ a† |0〉

= 〈0| ∂

∂aα

∂

∂aβ
e−

1
2

a Λ̄ a e−
1
2

a† Λa† |0〉

= 〈0|e− 1
2

a Λ̄ a [−Λ̄αβ + Λ̄αγΛ̄βδaγaδ] e
− 1

2
a† Λa† |0〉

=
1

2
Λ̄†

αβF +

[

Λ̄† ∂F

∂Λ̄†
Λ̄†

]

αβ

. (A.2)
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The resulting differential equation:

∂F

∂Λαβ
=

1

2
Λ̄†

αβF + [Λ̄† ∂F

∂Λ̄†
Λ̄†]αβ (A.3)

is solved by

F [Λ, Λ̄] = exp

{

−1

2
Tr ln(1 − Λ̄†Λ)

}

. (A.4)

We now turn to the matrix element

G[γα] = 〈0|e− 1
2

a Λ̄† a e−ib̄ (a+P a†) e−ib (a+P a†) e−
1
2

a† Λ a† |0〉
= 〈0|e− 1

2
a Λ̄†a e−iγ (a+P a†) e−

1
2

a† Λ a† |0〉 (A.5)

where we have introduced notation

γα = bα − b̄α . (A.6)

To calculate this matrix element we differentiate with respect to γα.

∂G

∂γα
= i〈0|e− 1

2
a Λ̄† a (aα + Pαβa†β) e−iγ(a+Pa†) e−

1
2

a† Λ a† |0〉 (A.7)

= i〈0|
[

Pαβ
∂

∂aβ

[

e−
1
2
Λ̄†aa

]

+ e−
1
2
Λ̄†aaaα

]

e−iγ(a+Pa†)e−
1
2
Λa†a† |0〉

= i
(

δαβ − (P Λ̄†)αβ

)

〈0|e− 1
2

a Λ̄† a aβ e−iγ(a+Pa†) e−
1
2

a† Λ a† |0〉

= i
(

δαβ − (P Λ̄†)αβ

) [

i(γP )βG + 〈0|e− 1
2

a Λ̄† a e−iγ(a+Pa†) (−Λβγa†γ) e−
1
2

a† Λa† |0〉
]

.

The last term can be expressed in terms of ∂G
∂γα

if in the very first line instead of commuting

a† to the left, we commute a to the right

∂G

∂γα
= i〈0|e− 1

2
a Λ̄† a (aα + Pαβa†β) e−iγ(a+Pa†)e−

1
2

a† Λ a† |0〉

= i
(

δαβ − (ΛP )αβ

)

〈0|e− 1
2

a Λ̄† ae−iγ(a+Pa†)(Pa†)β e−
1
2

a† Λ a† |0〉 (A.8)

So that

〈0|e− 1
2

a Λ̄† ae−iγ(a+Pa†)a†αe−
1
2

a† Λ a† |0〉 = −i

[

P
1

1 − ΛP

]

αβ

∂G

∂γβ
. (A.9)

Together with eq. (A.7) this gives equation

∂G

∂γα
= −(1 − P Λ̄†)αβPβωγωG − (1 − P Λ̄†)αβ[ΛP ]βǫ(1 − ΛP )−1

ǫω

∂G

∂γω
. (A.10)

This is solved by

G[γ] = G[0] exp

{

− 1

2
γ(1 − ΛP )[1 − P Λ̄†ΛP ]−1(1 − P Λ̄†)Pγ

}

(A.11)

= G[0] exp

{

− 1

2
γ(1 − P Λ̄†)[1 − ΛΛ̄†]−1(1 − ΛP )Pγ

}

where G[0] = F [Λ, Λ̄] of eq. (3.16).
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B The overlap matrices

In this appendix we calculate the overlap matrices Θ and Φ used in the text. Here we will

use frequency p− rather than rapidity to label the basis functions. However the normal-

ization is still taken to be consistent with expanding the field A in terms of creation and

annihilation operators aη, a†η. We start from the expression for the basis functions

f (b,j,η,k)(a, i, x−, x) = δab
ij 〈x|ei ∂2

2k−
x− |k〉 (B.1)

g(b,j,η,k)(a, i, x−, x) =

〈x|θ(−x−)ei ∂2

2k−
x−

(1−2l)ijδ
ab+θ(x−)[ei D2

2k−
x−

(1−2L)]ab
ij + ǫ(x−)[∆(1−l−L)]ab

ij |k〉 .

Thus

∂+g∗ p
x = δ(x−)〈p|2l − 2L + (1 − l − L)∆†|x〉 (B.2)

− i

2p−
〈p|θ(−x−)e

−i ∂2

2p−
x−

∂2(1 − 2l) + θ(x−)[e
−i D2

2p−
x−

D2(1 − 2L)]|x〉 .

In the expression above we have not written all the indices explicitly. We first check the

orthonormality of the basis functions g:
∫

x
g∗(p)∂+g(k)

=
1

2
〈p|(1 − 2l)(1 − 2L) − (1 − 2L)(1 − 2l) +

1

2
(2 − 2l − 2L)∆(2 − 2l − 2L)|k〉

+〈p|
∫

x−<0

[

e
−ix−[ ∂2

2p−
− ∂2

2k−
] i∂2

2k−
− i

8k−
(2 − 2l − 2L)∆†(1 − 2l)∂2eix− ∂2

2k−

]

|k〉

+〈p|
∫

x−>0

[

e
−ix−[ D2

2p−
− D2

2k−
] iD2

2k−
− i

8k−
(2 − 2l − 2L)∆†(1 − 2L)D2eix− D2

2k−

]

|k〉

= 〈p|
[

1

1 − k−

p−
+ iǫ

− 1

1 − k−

p−
− iǫ

]

|k〉

+
1

2
〈p|(1−2l)(1−2L)−(1−2L)(1−2l)+

1

2
(2−2l−2L)(∆−∆†)(2−2l−2L)|k〉

= −i2πδ(
k−

p−
− 1) = −i2πδ(η − ξ) .

Now for the calculation of the overlap matrices

Θ(p, p−, k, k−) = i

∫

x−,x
∂+g∗(p)f(k) = i〈p|2l − 2L + (1 − l − L)∆†|k〉 (B.3)

+

∫

x−<0

1

2π−
〈p|∂2e

−ix−[ ∂2

2p−
− ∂2

2k−
]
(1 − 2l)|k〉

+

∫

x−>0

1

2π−
〈p|D2(1 − 2L)e

−ix−[ D2

2p−
− ∂2

2k−
]|k〉

= i〈p|2l − 2L + (1 − l − L)∆†|k〉

+
i

1 − p−

k− − iǫ
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2L)

1

1 − ∂2

D2
p−

k− − iǫ
|k〉 .
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By inspection we see that to get the matrix Φ we need to substitute k− → −k− and also

k → −k. Thus we have

Φ(p, p−;−k, k−) = i〈p|2l − 2L + (1 − l − L)∆†|k〉

+
i

1 + p−

k− − iǫ
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2L)

1

1 + ∂2

D2
p−

k− − iǫ
|k〉 .

We have been a little cavalier about the non-commuting factors D and ∂ in the above

expressions. It is clear by construction that all factors of D come from the function g∗.

Thus all the above expressions should be understood as ordered such that all factors D are

to the left of factors ∂.

C Perturbative expansion

Our aim in this appendix is to show explicitly that the O(Y 2) terms discussed in section

3 have their exact counterpart in perturbative calculation. To do this we have to expand

our expression for the matrix K to first order in j. Our discussion will be for the wave

function rather than for the S- matrix, but the extension is straightforward.

We thus consider the expansion of the operator Λ to O(j). This is straightforward and

we give some details below. In all the expressions below the field b has to be understood

as ba
i = ∂i

∂2 ja. We start by expanding the matrix Φ

Φ(p, η;−k, ξ) = i〈p|2(l − L) + (1 − l − L)∆†|k〉

+
i

1 + eξ−η
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2L)

1

1 + ∂2

D2 eξ−η
|k〉 . (C.1)

We have neglected the iǫ terms in this expressions since the poles are never reached for

physical values of rapidity.

2(l − L)ab
ij = 2f cab

(

∂i
1

∂2
bc
j + bc

i

1

∂2
∂j − ∂i

1

∂2
{∂k, b

c
k}

1

∂2
∂j

)

. (C.2)

Further

∆†ab
kj = f cab∂k

1

∂2
[∂l, b

c
l ]

1

∂2
∂j − 2f cabbc

k

1

∂2
∂j . (C.3)

And

(1 − l − L)ad
ij ∆†db

kj = f cab

{

−2bc
i

1

∂2
∂j + ∂i

1

∂2
bc
k∂k

1

∂2
∂j + 3∂i

1

∂2
∂kb

c
k

1

∂
∂j

}

. (C.4)

Thus the first term in Φ is

2(l − L)ab
ij + (1 − l − L)ad

ij ∆†db
kj = f cab

(

2∂i
1

∂2
bc
j + ∂i

1

∂2
[∂k, b

c
k]

1

∂2
∂j

)

. (C.5)

The second term in Φ is of order one, while for the third term we need

(1 − 2L)ad
ij

[

1

1 + ∂2

D2 eξ−η

]db

=
1

1 + eξ−η

(

δij − 2∂i
1

∂2
∂jδ

ab

)

− f cab

1 + eξ−η

(

δij − 2∂i
1

∂2
∂j

)

{∂k, b
c
k}

1

∂2

eξ−η

1 + eξ−η

−f cab

(

∂i
1

∂2
{∂k, b

c
k}

1

∂2
∂j − ∂i

1

∂2
bc
j − bc

i

1

∂2
∂j

)

. (C.6)
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Thus finally

Φab
ij = if cab

{

2∂i
1

∂2
bc
j + ∂i

1

∂2
[∂k, b

c
k]

1

∂2
∂j

}

+if cab

(

∂i
1

∂2
{∂k, b

c
k}

1

∂2
∂j − ∂i

1

∂2
bc
j − bc

i
1

∂2
∂j

)

+if cab 1

1 + eξ−η

(

δij − 2∂i
1

∂2
∂j

)

{∂k, b
c
k}

1

∂2

eξ−η

1 + eξ−η
. (C.7)

The expansion of matrix Θ is trivial, since we only need its leading order term

Θab
ij =

(

δab
ij − 2∂i

1

∂2
∂jδ

ab

)(

i

1 − eξ−η − iǫ
− i

1 − eξ−η + iǫ

)

= −
(

δab
ij − 2∂i

1

∂2
∂jδ

ab

)

δ(ξ − η) . (C.8)

This yields

Λab
ij (x, η; y, ξ) =

∫

ζ
Θ−1ad

ik (x, η, z, ζ)Φdb
kj(z, ζ, y, ξ) (C.9)

= if cab〈x|
{

−∂i
1

∂2
bc
j − bc

i

1

∂2
∂j

}

|y〉 + if cab eξ−η

(1 + eξ−η)2
δij〈x| {∂l, b

c
l }

1

∂2
|y〉 .

In this calculation we are only interested in terms which contribute O(Y 2) when Λ is

integrated over both rapidities. The second term in eq. (C.9) exponentially decreases for

ξ − η → ±∞ and thus does not contribute. We can then limit ourselves to

Λab
ij (x, η; y, ξ) ≈ λab

ij (x, y) ≡ −igf cab

{

∂i(x)
1

∂2
(x, y)bc

j(y) + bc
i (x)

1

∂2
(x, y)∂j(y)

}

(C.10)

where we have also restored the coupling constant, omitted from the previous formulae for

simplicity. We now concentrate on the expansion of the evolved wave function

|Ψ〉 = e
i

R

z,ǫ
ba
i (z)

“

aa
i (z,ζ)+a†a

i (z,ζ)
”

e−
1
2

R

x,y,η,ξ
a†b

k
(x,η) Λbc

kj(x,y,η,ξ) a†c
j (y,ξ)|0〉 . (C.11)

Expanding in the Fock basis we find

|Ψ〉 =

[

1 − Y
1

2

∫

x,y
ba
i (x)ba

i (y)

]

|0〉

+

[

i

∫

x,η
ba
i (x)a†ai (x, η) − ig

Y

2π

∫

x,y,η
ba
i (x)λad

ij (x, y)a†dj (y, η)

]

|0〉

+

[

−g

2

∫

x,y,η,ξ
λuv

ij (x, y)a†ui (x, η)a†vj (y, ξ) − 1

2

∫

x,y,η,ξ
ba
i (x)bb

j(y)a†ai (x, η)a†bj (y, ξ)

]

|0〉

Hence the one gluon component is can be written as

〈a, i, x, η|Ψ〉 = iba
i (x) + g

Y

2π
fabcbb

i(x)

∫

y

∂i

∂2
(x, y)bc

j(y)

= ig
∂i

∂2
ja + g3 Y

2π
fabc ∂i

∂2
(x, z)jb(z)

1

∂2
(x, y)jc(y) (C.12)
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Figure 4. Diagrams contributing to the one gluon component of the wave function in perturbation

theory.

Figure 5. Diagrams contributing to the two gluon component of the wave function in perturbation

theory.

where now the charge j is normalized so that the charge of a single gluon is of order unity.

The two gluon component of the wave function is

〈a, i, x, η; b, y, j, ξ|Ψ〉 = −g2

∫

u
∂i

1

∂2
(x, u)ja(u)∂j

1

∂2
(y, v)jb(v) (C.13)

+ ig2fabc

∫

u

{

∂i
1

∂2
(x, y)∂j

1

∂2
(y, u)jc(u) − ∂j

1

∂2
(y, x)∂i

1

∂2
(x, u)jc(u)

}

.

These expressions have a very simple diagrammatic interpretation.

The diagrams contributing to the one gluon state components are depicted in figure

4 while to the two gluon components in figure 5. Clearly the first diagram on figure4

represents the first term in eq. (C.12) and the second diagram — the second term in

eq. (C.12). The second term has an extra power of Y due to the additional loop integral.

Thus when calculating the S-matrix, the square of the first term is of order O(Y ), while

the cross term is of order O(Y 2). This is precisely the term we have encountered in our

calculation in the body of the paper.

Similarly figure5 represents the two terms in eq. (C.13). Both terms here when squared,

give contribution of O(Y 2) to the S matrix.
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